Email updates

Keep up to date with the latest news and content from Proteome Science and BioMed Central.

Open Access Research

Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines

Kim J Victor1, Anne Y Fennell1* and Jérôme Grimplet12

Author Affiliations

1 Department of Horticulture, Forestry, Landscape, & Parks, Box 2140A, South Dakota State University, Brookings, SD 57007, USA

2 Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja) Longroño, 26006, Spain

For all author emails, please log on.

Proteome Science 2010, 8:44  doi:10.1186/1477-5956-8-44

Published: 12 August 2010

Abstract

Background

Growth cessation, cold acclimation and dormancy induction in grapevines and other woody perennial plants native to temperate continental climates is frequently triggered by short photoperiods. The early induction of these processes by photoperiod promotes winter survival of grapevines in cold temperate zones. Examining the molecular processes, in particular the proteomic changes in the shoot, will provide greater insight into the signaling cascade that initiates growth cessation and dormancy induction. To begin understanding transduction of the photoperiod signal, Vitis riparia Michx. grapevines that had grown for 35 days in long photoperiod (long day, LD, 15 h) were subjected to either a continued LD or a short photoperiod (short day, SD, 13 h) treatment. Shoot tips (4-node shoot terminals) were collected from each treatment at 7 and 28 days of LD and SD for proteomic analysis via two-dimensional (2D) gel electrophoresis.

Results

Protein profiles were characterized in V. riparia shoot tips during active growth or SD induced growth cessation to examine physiological alterations in response to differential photoperiod treatments. A total of 1054 protein spots were present on the 2D gels. Among the 1054 proteins, 216 showed differential abundance between LD and SD (≥ two-fold ratio, p-value ≤ 0.05). After 7 days, 39 protein spots were more abundant in LD and 30 were more abundant in SD. After 28 days, 93 protein spots were more abundant in LD and 54 were more abundant in SD. MS/MS spectrometry was performed to determine the functions of the differentially abundant proteins.

Conclusions

The proteomics analysis uncovered a portion of the signal transduction involved in V. riparia grapevine growth cessation and dormancy induction. Different enzymes of the Calvin-Benson cycle and glutamate synthetase isoforms were more abundant either in LD or SD treatments. In LD tissues the significantly differentially more abundant proteins included flavonoid biosynthesis and polyphenol enzymes, cinnamyl alcohol dehydrogenase, and TCP-1 complexes. In the SD tissue photorespiratory proteins were more abundant than in the LD. The significantly differentially more abundant proteins in SD were involved in ascorbate biosynthesis, photosystem II and photosystem I subunits, light harvesting complexes, and carboxylation enzymes.